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ABSTRACT
This paper analyzes the performance of concurrent (index)
scan operations in both record (NSM/PAX) and column
(DSM) disk storage models and shows that existing schedul-
ing policies do not fully exploit data-sharing opportunities
and therefore result in poor disk bandwidth utilization. We
propose the Cooperative Scans framework that enhances per-
formance in such scenarios by improving data-sharing be-
tween concurrent scans. It performs dynamic scheduling of
queries and their data requests, taking into account the cur-
rent system situation. We first present results on top of
an NSM/PAX storage layout, showing that it achieves sig-
nificant performance improvements over traditional policies
in terms of both the number of I/Os and overall execution
time, as well as latency of individual queries. We provide
benchmarks with varying system parameters, data sizes and
query loads to confirm the improvement occurs in a wide
range of scenarios. Then we extend our proposal to a more
complicated DSM scenario, discussing numerous problems
related to the two-dimensional nature of disk scheduling in
column stores.

1. INTRODUCTION
In traditional database research disk scans were mostly

considered trivial, and simple LRU or MRU buffering poli-
cies were proposed for them [6, 23]. We show that if scans
start at different times, these policies achieve only a low
amount of buffer reuse. To improve this situation, some
systems support the concept of circular scans [9, 10, 20, 14]
which allows queries that start later to attach themselves to
already active scans. As a result, the disk bandwidth can be
shared between the queries, resulting in a reduced number
of I/O requests. However, this strategy is not efficient when
queries process data at different speeds or a query scans only
a range instead of a full table.

In this paper we analyze the performance of existing scan
strategies, identifying three basic approaches: normal, at-
tach and elevator. In normal, a traditional LRU buffering
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policy is employed, while in both attach and elevator incom-
ing queries can join an ongoing scan in case there is overlap
in data need, with the main difference that elevator employs
a single, strictly sequential scan cursor, while attach allows
for multiple (shared) cursors. Benchmarks show that they
provide sharing of disk bandwidth and buffer space only in
a limited set of scenarios. This is mostly caused by the fact
that the disk access order is predefined when a query en-
ters the system, hence it can not be adjusted to optimize
performance in dynamic multi-query scenarios.
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Figure 1: Normal Scans vs Cooperative Scans

To overcome these limitations, we introduce the Cooper-
ative Scans framework, depicted in Figure 1. It involves
CScan – a modified (index) Scan operator, that announces
the needed data ranges upfront to an active buffer manager
(ABM). The ABM dynamically optimizes the order of disk ac-
cesses, taking into account all current CScan requests on a
relation (or a set of clustered relations). This framework can
run the basic normal, attach and elevator policies, but also
a new policy, relevance, that is central to our proposal. Be-
sides optimizing throughput, the relevance policy also min-
imizes latency. This is done by departing from the strictly
sequential access pattern as present in attach and elevator.
Instead, relevance makes page load and eviction decisions
based on per-page relevance functions, which, for example,
try to evict pages with a low number of interested queries
as soon as possible, while prioritizing page reads for short
queries and pages that have many interested queries.

To further illustrate the need for a more flexible approach
to I/O scheduling, consider the following example. Assume
a system has to execute two queries, Q1 and Q2, which enter
the system at the same time and process data at the same
speed. Q1 needs to read 30 pages and is scheduled first, while
Q2 needs 10 different pages. If those queries get serviced in
a round-robin fashion, as in the normal policy, Q2 finishes
after 20 pages are loaded, and Q1 after 40, giving an average
query latency of 30. The elevator policy may perform better,
by first fully servicing Q2 and then Q1, reducing the average
waiting time from 30 to 25. Still, elevator can choose the



opposite order, resulting in waiting times of 30 and 40, hence
actually increasing the average time. With relevance, we aim
to get close to the optimal average query latency, without
relying on the sequential scan order, by making flexible I/O
scheduling decisions.
Contributions. We view our contributions as follows:
(i) the definition of the Cooperative Scans framework, and
the new relevance policy. (ii) experiments that help better
understand the behavior of the existing normal, attach and
elevator scheduling policies, and also show that the relevance
policy outperforms them in a wide range of scenarios, both
for row- and column-stores. (iii) showing that I/O schedul-
ing for column-stores is significantly more complex than for
row-storage; a characteristic that so far seems to have been
overlooked.
Outline. In Section 2 we motivate our research, arguing
that efficiently handling (index) scans is an important topic
and will become even more so in the future, given current
hardware and application trends. Section 3 analyzes exist-
ing approaches to scan processing. In Section 4 we intro-
duce the Cooperative Scans framework for row stores and
we validate its performance in Section 5. In Section 6 we
extend Cooperative Scans to column stores, that recently
gained popularity. The incorporation of ABM into an exist-
ing DBMS is discussed in Section 7, where we also explore
possibilities of adapting order-aware query processing opera-
tors to handle out-of-order data delivery. We discuss related
work in Section 8 before concluding in Section 9.

2. MOTIVATION
Database systems are addicted to random disk I/O, caused

by unclustered index lookups, and hardware trends are push-
ing this model to the limit of sustainability. Foreign-key
joins, as well as selection predicates executed using unclus-
tered indices both may yield large streams of row-IDs for
looking up records in a target table. If this target table is
large and the accesses are scattered, the needed disk pages
will have to be fetched using random disk I/O. To optimize
performance, industry-strength RDBMSs make good use of
asynchronous I/O to farm out batches of requests over mul-
tiple disk drives, both to achieve I/O parallelism between
the drives, and to let each disk handle multiple I/Os in a
single arm movement (amortizing some access latency).

processing disks throughput

# CPU RAM # totsize cost single 5-way

4 Xeon 3.0GHz dual-core 64GB 124 4.4TB 47% 19497 10404
2 Opteron 2GHz 48GB 336 6.0TB 80% 12941 11531
4 Xeon 3.0GHz dual-core 32GB 92 3.2TB 67% 11423 6768
2 Power5 1.65GHz dual-core 32GB 45 1.6TB 65% 8415 4802

Table 1: Official 2006 TPC-H 100GB results

Massive unclustered disk access occurs frequently in bench-
marks like TPC-H, and it is not uncommon now to see
benchmark configurations that use hundreds or thousands
of disks. For example, Table 1 shows that the four most
recent TPC-H submissions of even the smallest 100GB data
size used an average 150 disks with total storage capacity of
3.8 terabyte. All these disks are less than 10% full, and the
main reason for their high number is to get more disk-arms,
allowing for a higher throughput of random I/O requests.
Note from Table 1 that a high number of disks seems es-
pecially crucial in the concurrent (5 stream) query scenario.

The underlying hardware trends of the past decades, namely
sustained exponential growth in CPU power as well as much
faster improvement in disk-bandwidth than in I/O latency,
are expected to continue. Thus, to keep each next CPU gen-
eration with more cores busy, the number of disks will need
to be doubled to achieve system balance.

This exponential trend is clearly unsustainable, and one
can argue that in the real world (i.e. outside manufacturer
benchmarking projects) it is already no longer being sus-
tained, and database servers are often configured with fewer
disks than optimal. The main reason for this is cost, both in
terms of absolute value of large I/O subsystems (nowadays
taking more than two thirds of TPC-H benchmark systems
cost, see Table 1), but also maintenance costs. In a multi-
thousand disk configuration, multiple disks are expected to
break each day [25], which implies the need for full-time
attendance by a human system administrator.
Better Scanning. We argue that the only way to avoid
random I/O is to rely more on (clustered index) scans, which
depend on sequential disk bandwidth rather than latency.
Modern data warehousing systems try to achieve this by:
(1) storing relations redundantly in multiple orders [2], such
that more query patterns can use a clustered access path.
To avoid the costs of updating multiple such tables, updates
in such systems are buffered in RAM in differential lists and
are dynamically merged with persistent data.
(2) exploiting correlated orderings. In MonetDB/X100, a
min- and max-value is kept for each column per large disk
block. Such meta-data, similar to “small materialized ag-
gregates” [19] and also found e.g. in the Netezza system as
“zonemaps” [21], allows avoiding reading unneeded blocks
during an (index) scan, even if the data is not ordered on
that column, but on a correlated column. For example, in
the lineitem table in the TPC-H schema it allows avoiding
I/O for almost all non-relevant tuples in range selections on
any date column in the TPC-H schema, as dates in the fact
tables of a data warehouse tend to be highly correlated. This
technique can sometimes result in a scan-plan that requires
a set of non-contiguous table ranges.
(3) using multi-table clustering or materialized views, to ex-
ploit index range-scans even over foreign-key joins.
(4) exploiting large RAMs to fully buffer small (compressed)
relations, e.g. the dimensions of a star schema.
(5) reducing scan I/O volume by offering column storage
(DSM) as an option [33, 28] to avoid reading unused columns.
The same remark as made in (1) on handling updates ap-
plies here. However, I/O scheduling in column stores can be
significantly more complex, as shown in Section 6.
(6) using lightweight compression, where the reduced I/O
cost due to size reduction outweighs the CPU cost of de-
compression. It has been shown that with column storage,
(de-)compression becomes less CPU intensive and achieves
better compression ratios [33, 1].
(7) using on-disk processing for reducing disk-memory traf-
fic and main-CPU load. For example, Netezza uses pro-
grammable FPGAs [21] to quickly perform selection on data
before it gets to the main memory.

After applying (1-2), data warehousing queries use (clus-
tered index) scans for their I/O, typically selecting ranges
from the fact tables. Other table I/O can be reduced using
(3-4) and I/O bandwidth can be optimized to its minimum
cost by (5-7). The challenge addressed here is that if this
mode of operation is to be successful, the DBMS must be
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Figure 2: Probability of finding a useful chunk in a
randomly-filled buffer pool, with varying buffer pool
size and query demand

capable of handling many concurrent scan queries efficiently.
However, unlike asynchronous random I/O, where concur-
rent batches of random I/Os may allow for better amortized
disk seeks thanks to request reordering, the naive approach
to concurrent scans causes queries to fight for sequential read
bandwidth, reducing overall throughput. We should note
that we do not focus on overall query throughput alone as
our efficiency metric: it is equally important that average
query latency is minimized. The rationale here is that in
many scenarios, for example when an application submits
queries one after another, query latencies significantly influ-
ence the execution time of a query stream and hence the
observed system throughput.

Our work exploits the observation that concurrent scans
have a high expected amount of overlapping data need. This
creates the opportunity for synchronizing queries, such that
they share buffered data and thus reduce the demand for
disk bandwidth. In the following we discuss how existing
systems exploit this opportunity and propose a new tech-
nique that further improves bandwidth sharing.

3. TRADITIONAL SCAN PROCESSING
With multiple scans running concurrently, in a naive im-

plementation sequential requests from different queries can
interleave, causing frequent disk-arm movements and result-
ing in a semi-random access pattern and low overall disk
throughput. To avoid this problem, most database systems
execute such scans using large isolated I/O requests span-
ning over multiple pages, together with physical clustering
of table pages. As a result, the overhead of shifting the disk-
arm is amortized over a large chunk of data, resulting in an
overall bandwidth comparable to a standalone scan.

Even when using bandwidth-efficient chunk-based I/O,
different scheduling policies are used for concurrent scans.
The most naive, called normal in the rest of the paper,
performs scans by simply reading all disk blocks requested
by a query in a sequential fashion, using an LRU policy for
buffering. The disadvantage of LRU is that if one query
starts too long after the other, the loaded pages will already
be swapped out before they can be reused. As a result,
assuming there is no buffer reuse between the queries, and
queries are serviced in a round-robin fashion, the expected
number of I/Os performed in the system until a new query
Qnew that reads Cnew chunks finishes can be estimated by:
Cnew +

P
q∈queries MIN(Cnew, Cq).

The major drawback of the normal policy is that it does

not try to reuse data shared by different running queries. In
a dynamic environment, with multiple partial scans running
at the same time, it is likely that the buffer pool contains
some data that is useful for a given query. With a table
consisting of CT chunks, a query that needs CQ chunks and
a buffer pool of CB chunks, the probability of finding some
useful data in the randomly-filled buffer is:

Preuse = 1−
CB−1Y

i=0

CT − CQ − i

CT − i
(1)

As Figure 2 shows, even for small scanned ranges and buffer
sizes, this probability can be high, e.g. over 50% for a 10%
scan with a buffer pool holding 10% of the relation. Unfor-
tunately, the normal policy, by enforcing a sequential order
of data delivery, at a given time can use only a single page,
reducing this probability to CB/CT .

In many cases it is possible to relax the requirement of se-
quential data delivery, imposed by normal. Even when using
a clustered index for attribute selection, consuming opera-
tors often do not need data in a particular order. This allows
for scheduling policies with “out-of-order” data delivery.

A simple idea of sharing disk access between the over-
lapping queries is used in the attach strategy. When a
query Qnew enters the system, it looks at all other running
scans, and if one of them (Qold) is overlapping, it starts
to read data at the current Qold’s position. To optimize
performance, attach should choose a query that has the
largest remaining overlap with Qnew. Once Qnew reaches
the end of its desired range, it starts from the beginning
until reaching the original position. This policy, also known
as “circular scans” or “shared scans”, is used among oth-
ers in Microsoft SQLServer [10], RedBrick [9], and Tera-
data [20], and allows significant performance improvement
in many scenarios. The attach policy, however, may suffer
from three problems. First, if one query moves much faster
than the other, the gap between them may become so large
that pages read by the fastest query are swapped out before
the slower reaches them (they “detach”). Second, if queries
are range scans, it is possible that one of the queries that
process data together finishes, and the other continues by
itself, even though it could attach to another running query.
For example, if a full scan is underway but not yet in its
range, attach misses this sharing opportunity. Finally, when
exploiting per-block meta-data, the scan request can consist
of multiple ranges, making it even harder to benefit from
sharing a scan with a single query. As a result, the upper
bound on the number of I/Os performed by attach is the
same as in normal.

The elevator policy is a variant of attach that addresses
its problems by enforcing strict sequential reading order of
the chunks for the entire system. This optimizes the disk la-
tency and minimizes the number of I/O requests, and thus
leads to good disk bandwidth and query throughput. How-
ever, the problem here is that query speed degenerates to the
speed of the slowest query, because all queries wait for each
other. Also, range queries often need to wait a long time be-
fore the reading cursor reaches the data that is interesting
for them. In principle, in the worst case the number of I/Os
performed by a system before a fresh query Qnew finishes
can be MIN(CT , Cnew +

P
q∈queries Cq), where CT is the

number of chunks in the entire table.



4. COOPERATIVE SCANS
The analysis in the previous section, further confirmed

by results in Section 5, demonstrates that existing scan-
processing solutions that try to improve over the normal
policy still suffer from multiple inefficiencies. In this sec-
tion we propose a new “Cooperative Scans” framework that
avoids these problems. As Figure 1 presents, it consists of a
cooperative variant of the traditional (index) Scan operator,
named CScan, and an Active Buffer Manager (ABM).

The new CScan operator registers itself as an active scan
on a range or a set of ranges from a table or a clustered
index. CScan has much the same interface as the normal Scan
operator, but it is willing to accept that data may come in a
different order. Note that some query plans exploit column
ordering present on disk. We discuss integration of such
queries in our framework in Section 7.

The Active Buffer Manager (ABM) extends the traditional
buffer manager in that it keeps track of CScan operators and
which parts of the table are still needed by each of them,
and tries to schedule disk reads such that multiple concur-
rent scans reuse the same pages. The overall goal of the ABM

is to minimize average query cost, keeping the maximum
query execution cost reasonable (i.e. ensuring “fair” treat-
ment of all queries). As discussed before, scan processing is
usually performed with large I/O units we call chunks, to
achieve good bandwidth with multiple concurrent queries.
Note, that a chunk in memory does not have to be contigu-
ous, as it can consists of multiple pages filled in with a single
scatter-gather I/O request. In our framework there are two
more reasons for using chunks. First, the number of chunks
is usually one or two orders of magnitude smaller than the
number of pages, thus it becomes possible to have chunk-
level scheduling policies that are considerably more complex
than page-level policies. Secondly, chunks are logical enti-
ties whose boundaries may not even correspond exactly to
page boundaries, a feature that will be exploited in the more
complex scenarios with column-based storage.

In our system, the Cooperative Scans framework imple-
ments the traditional scan-processing policies: normal, at-
tach and elevator. However, its main benefit comes from
a newly introduced relevance policy that takes scheduling
decisions by using a set of relevance functions. Both the
CScan and ABM processes, as well as the relevance functions
used by them, are described in Figure 3.

As the top part of Figure 3 illustrates, the CScan process is
called on behalf of a certain query, qtrigger, that contains a
CScan operator in its query plan. Each time qtrigger needs a
chunk of data to process, selectChunk is called. This triggers
a search over all buffered chunks that still need to be pro-
cessed by the query, in chooseAvailableChunk, and returns
the most relevant one, as governed by useRelevance. If no
such chunk is available, the operator blocks until the ABM

process loads a chunk that is still needed by qtrigger. Our
useRelevance function promotes chunks with the smallest
number of interested queries. By doing so, the less interest-
ing chunks will be consumed early, making it safe to evict
them. This also minimizes the likelihood that less interest-
ing chunks will get evicted before they are consumed.

The ABM thread continuously monitors all currently run-
ning queries and their data needs. It schedules I/O requests
on behalf of the query with the highest priority, considering
the current system state. For this query, it chooses the most
relevant chunk to load, possibly evicting the least relevant

CScan process
selectChunk(qtrigger)
| if finished(qtrigger)
| | return NULL
| else
| | if abmBlocked()
| | | signalQueryAvailable()
| | chunk = chooseAvailableChunk(qtrigger)
| | if (chunk == NULL)
| | | chunk = waitForChunk(qtrigger)
| | return chunk

chooseAvailableChunk(qtrigger)
| cavailable = NULL, U = 0
| foreach c in interestingChunks(qtrigger)
| | if chunkReady(c) and useRelevance(c) > U
| | | U = useRelevance(c)
| | | cavailable = c
| return cavailable

ABM process
main()
| while (true)
| | query = chooseQueryToProcess()
| | if query == NULL
| | | blockForNextQuery()
| | | continue
| | chunk = chooseChunkToLoad(query)
| | slot = findFreeSlot(query)
| | loadChunk(chunk, slot)
| | foreach q in queries
| | | if (chunkInteresting(q, chunk) and queryBlocked(q)
| | | | signalQuery(q, chunk)

chooseQueryToProcess()
| relevance = −∞, query = NULL
| foreach q in queries
| | qr = queryRelevance(q)
| | if (query == NULL or qr > relevance)
| | | relevance = qr
| | | query = q
| return query

chooseChunkToLoad(qtrigger)
| cload = NULL, L = 0
| foreach c in interestingChunks(qtrigger)
| | if (not chunkReady(c)) and loadRelevance(c) > L
| | | L = loadRelevance(c)
| | | cload = c
| return cload

findFreeSlot(qtrigger)
| sevict = NULL, K = ∞
| foreach s in slots
| | if empty(s)
| | | return s
| | c = chunkInSlot(s)
| | if (not currentlyUsed(s)) and (not interesting(c, qtrigger))
| | and (not usefulForStarvedQuery(c))
| | and keepRelevance(c) < K
| | | K = keepRelevance(c)
| | | sevict = s
| freeSlot(sevict)
| return sevict

NSM Relevance Functions
queryRelevance(q)
| if not queryStarved(q)
| | return −∞
| return - chunksNeeded(q) +
| | waitingTime(q) / runnningQueries()

useRelevance(c, qtrigger)
| return Qmax− numberInterestedQueries(c)

loadRelevance(c)
| return numberInterestedStarvedQueries(c) * Qmax
| + numberInterestedQueries(c)

keepRelevance(c, qtrigger)
| return numberInterestedAlmostStarvedQueries(c) * Qmax
| + numberInterestedQueries(c)

queryStarved(qtrigger)
| return numberOfAvailableChunks(qtrigger) < 2

Figure 3: Pseudo-code for the Relevance policy



chunk present in the buffer manager. Once a new chunk
is loaded into the ABM, all blocked queries interested in that
chunk are notified. This is the core functionality of ABM’s
main loop, as found in the middle part of Figure 3.

The chooseQueryToProcess call is responsible for finding
the highest priority query, according to queryRelevance, to
load a chunk for. This queryRelevance function considers
non-starved queries (i.e. a queries that have 2 or more avail-
able chunks, including the one they are currently processing)
equal, assigning them the lowest priority possible. Starved
queries are prioritized according to the amount of data they
still need, with shorter queries receiving higher priorities.
However, to prevent the longer queries from being starved
forever, the priorities are adjusted to also promote queries
that are already waiting for a long time. By prioritizing
short queries, ABM tries to avoid situations where chunks are
assigned to queries in a round-robin fashion, as this can
have a negative impact on query latency. Besides, a chunk
loaded for a short query has a higher chance of being useful
to some large query than the other way around. In case
ABM does not find a query to schedule a chunk for, it blocks
in blockForNextQuery, until the CScan operator wakes it up
again using signalQueryAvailable.

Once ABM has found a query to schedule a chunk for, it calls
the chooseChunkToLoad routine to select a not yet loaded
chunk that still needs to be processed by the selected query.
The loadRelevance function determines which chunk will ac-
tually be loaded, not only by looking at what is relevant
to the current query, but also taking other queries needs
into consideration. To maximize sharing, it promotes chunks
that are needed by the highest number of starved queries,
while at the same time slightly adjusting priorities to prefer
chunks needed by many non-starved queries.

If there are no free slots in the buffer pool, ABM’s find-
FreeSlot routine needs to swap out the chunk with the low-
est keepRelevance. This function is similar to loadRelevance,
except that when looking at queries, we treat queries on the
border of starvation as being starved, to avoid evicting their
chunks, which would make them starved, hence schedulable,
immediately.

The relevance policy tries to maximize buffer pool reuse
without slowing down fast queries. Thus, a slow query will
re-use some of the chunks loaded by a fast query, skipping
over chunks that it was too slow to process. These are read
again later in the process, when the fast query might already
be gone. The access pattern generated by this approach may
be (quasi-) random, but since chunks consist of multiple
sequential pages, disk (arm) latency is still well amortized.

5. ROW-WISE EXPERIMENTS

5.1 Benchmark settings

Benchmark system: We carried out row storage exper-
iments on MonetDB/X100, using the PAX storage model,
which is equivalent to NSM in terms of I/O demand. The
chunk size used was 16MB, and the ABM buffer-pool size
was set to 64 chunks (1GB), unless stated otherwise. Direct
I/O was used, to avoid operating system buffering. Our test
machine was a dual-CPU AMD Opteron 2GHz system with
4GB of RAM. The storage facility was a 4-way RAID sys-
tem delivering slightly over 200 MB/s.
Benchmark dataset: We used the standard TPC-H [30]

benchmark data with scale factor 10. In this setting the
lineitem table consumes over 4GB of disk space. The other
tables are fully cached by the system.
Queries: To allow flexible testing of our algorithms we have
chosen two queries based on the TPC-H benchmark. Query
FAST (F) is TPC-H Q6, which is a simple aggregation.
Query SLOW (S) is TPC-H Q1 with extra arithmetic com-
putations to make it more CPU intensive. For all queries we
allow arbitrary scaling of the scanned table range. In this
section we use the notation QUERY-PERCENTAGE, with
QUERY representing the type of query, and PERCENTAGE
the size of the range being scanned. For example, with F-
10 we denote query FAST, reading 10% of the full relation
from a random location. We use multiple query streams,
each sequentially executing a random set of queries. There
is a 3 second delay between starting the streams, to better
simulate queries entering an already-working system.

5.2 Comparing scheduling policies
Table 2 shows the results for all scheduling policies when

running 16 streams of 4 queries. We used a mix of slow
and fast queries with selectivity of 1%, 10%, 50% and 100%.
The two major system-wide results are the average stream
running time, that represents the system throughput, and
the average normalized latency of a query (running time in
this benchmark divided by the base time, when the query
runs by itself with an empty buffer), that represents the
system latency. Additionally we provide the total execution
time, CPU-utilization, and the number of issued I/Os. The
difference between the total time and the average stream
time comes from the random distribution of queries in the
streams, resulting in a significant variance of stream running
times. For each query type and policy we provide the aver-
age latency, normalized latency and number of I/Os issued
when scheduling this query type. Additionally, Figure 4
presents a detailed analysis of the I/O requests issued by
each policy.

As expected, the normal policy achieves the worst perfor-
mance. As Figure 4 shows, it maintains multiple concurrent
sequential scans, which leads to the largest number of I/O
requests and a minimal buffer reuse. Since the query load is
relatively CPU-intensive, it still manages to use a significant
fraction of the CPU time.

The attach policy allows merging requests from some queries.
As a result, it consistently improves the performance of all
query types and the system throughput. Still, in Figure 4
we see that there are multiple (albeit fewer than in normal)
concurrent scans, since not all queries can share the same
chunk sequence. Additionally, we can see that a faster query
can detach from a slower one (circled), resulting in a split
of a reading sequence, further reducing the performance.

The elevator policy shows a further reduction of the I/O
requests and improvement of system throughput. This is a
result of its simple I/O pattern seen in Figure 4. However,
we see that the average normalized latency is very bad for
this policy. This is caused by the short queries that suffer
from a long waiting time, and achieve results even worse
than in normal. This blocking of queries also degrades the
overall system time, since it delays the start moment of the
next query in a given stream. We also see that fast and slow
queries differ little in performance - this is caused by the
fast queries waiting for the slow ones.

Our new relevance policy achieves the best performance,



Normal Attach Elevator Relevance

System statistics
Avg. stream time 283.72 160.81 138.41 99.55
Avg. normalized latency 6.42 3.72 13.52 1.96
Total time 453.06 281.19 244.45 238.16
CPU use 53.20% 81.31% 90.20% 93.94%
I/O requests 4186 2325 1404 1842

Query statistics
query count standalone latency(sec) norm. I/Os latency(sec) norm. I/Os latency(sec) norm. latency(sec) norm. I/Os

cold time avg stddev lat. avg stddev lat. avg stddev lat. avg stddev lat.

F-01 9 0.26 1.71 1.02 6.58 2 1.02 0.49 3.92 2 5.31 7.33 20.42 0.52 0.36 2.00 2
F-10 7 2.06 13.97 5.69 6.78 23 6.23 2.56 3.02 18 15.17 8.63 7.36 3.30 1.30 1.60 18
F-50 6 10.72 103.59 14.96 9.66 78 58.77 10.96 5.48 67 44.87 7.92 4.19 18.21 6.64 1.70 43
F-100 9 20.37 192.82 31.56 9.47 153 96.98 23.33 4.76 69 59.60 19.57 2.93 29.01 8.17 1.42 69
S-01 13 0.38 1.67 1.25 4.39 2 1.19 0.65 3.13 3 15.01 15.04 39.50 0.55 0.29 1.45 2
S-10 6 3.55 21.58 5.11 6.08 19 15.12 4.08 4.26 24 20.29 23.93 5.72 11.30 5.98 3.18 22
S-50 6 17.73 78.23 29.07 4.41 95 46.98 16.82 2.65 79 37.39 14.23 2.11 37.77 15.66 2.13 48
S-100 8 35.27 179.35 59.04 5.09 177 105.51 33.40 2.99 60 79.39 24.37 2.25 98.71 29.89 2.80 44

Table 2: Row-storage experiments (PAX) with a set of FAST and SLOW queries scanning 1%, 10%, 50%
and 100% of a table. 16 streams of 4 random queries. All times in seconds.
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Figure 4: Behavior of different scheduling algorithms: disk accesses over time

both in terms of global system parameters, as well as in most
query times. As Figure 4 shows, its I/O request pattern is
much more dynamic than in all the other policies. Interest-
ingly, although relevance issues more I/Os than elevator, it
still results in a better throughput. This is because the sys-
tem is mostly CPU-bound in this case, and extra available
I/O time is efficiently used to satisfy further query require-
ments. Also, relevance differs from other policies by sig-
nificantly improving the performance of I/O bound queries.
Average query latency is three times better than normal and
two times better than attach (I/O bound queries like F-100
can even be three times faster than attach).

5.2.1 Exploring Many Different Query Mixes
To provide more than accidental evidence of the superior

performance of relevance, we conducted experiments with
the same basic settings as in the previous section: 16 streams
of 4 queries, TPC-H table with scale factor 10 and buffer size
of 1GB. However, we changed the set of queries to explore
two dimensions: range size and data-processing speed. Fig-
ure 5 shows the results, where we compare throughput as the
average stream running time (y axis) and average normal-

ized query latency (x axis) of normal, attach and elevator,
with respect to our relevance policy. Each point represents
a single run for one policy. The point labels describe runs in
a format “SPEED-SIZE”, where SPEED defines what query
speeds were used (FS - mix of fast and slow, F - only fast,
FFS - 2 times more fast than slow etc.), and SIZE repre-
sents the size of the range being scanned: S - short (mix of
queries reading 1, 2, 5, 10 and 20% of a table), M - mixed
(1,2,10,50,100) and L - long (10,30,50,100).

From this experiment we conclude that indeed relevance,
representing the (1,1) point in this scatter plot, is consis-
tently better than all other policies. Recall that our objec-
tive was to find a scheduling policy that works well both on
the query throughput and on the query latency dimension,
and this is exactly what is shown in Figure 5. This scatter
plot also allows us to better understand the other policies.
We see that normal is inferior on both dimensions, whereas
elevator gets close to relevance on throughput, but its per-
formance is significantly hindered by poor query latencies.
As for the attach, it does find a balance between through-
put and latency, but it is consistently beaten by relevance
in both dimensions.
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Figure 5: Performance of various scheduling policies for query
sets varying in processing speed and scanned range
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Figure 6: Behavior of all scheduling poli-
cies under varying buffer pool capacities

5.2.2 Scaling The Data Volume

With growing dataset sizes, the percentage of a relation
that can be stored inside the buffer pool decreases. To sim-
ulate this, we tested the performance of different policies
under varying buffer size capacities, ranging from 12.5% to
100% of the full table size. This allows us to observe how dif-
ferent scheduling policies would behave under growing rela-
tion sizes, when a smaller fraction of a table can be buffered.
In this experiment we used a version of our relation trimmed-
down to 2 GB, that can be fully cached in the memory of our
benchmark machine. Figure 6 shows the results of a bench-
mark with two sets of queries, one disk-intensive, consisting
only of fast queries, and a CPU-intensive one, consisting of a
mix of fast and slow queries. We used 8 streams of 4 queries.

As expected, the number of I/Os is decreasing with in-
creasing buffer size. In the disk-intensive case, the absolute
system performance is directly influenced by this number,
because the system is never CPU-bound. Still, thanks to
better request scheduling, the relevance policy manages to
improve the performance, issuing significantly fewer I/O re-
quests even when using a 87.5% buffer capacity. In the CPU-
intensive scenario, the number of I/Os influence the absolute
time only partially. This is because most algorithms man-
age to make a system CPU-bound with some buffer capacity.
For relevance even a small buffer size of 12.5% of the full ta-
ble is enough to achieve this, as we can see by its mostly
constant performance.

Interestingly, Figure 6 shows that the performance ad-
vantages of relevance over the other policies as observed in
Figure 5 are maximized when tables get bigger (i.e. at low
buffered percentages). When looking at attach, the most
viable competitor, we see that throughput in I/O bound sit-
uations, as well as latency in CPU bound queries deteriorate
strongly, and we expect the advantage of relevance to grow
even more if table sizes become huge.
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Figure 7: Performance comparison with varying
number of concurrent queries and scanned ranges

5.2.3 Many Concurrent Queries
With more concurrent queries the opportunities for data-

reuse increase. In Figure 7 we present how the average
query time changes when an increasing number of concur-
rent queries reads 5, 20 and 50% of our relation, using a
buffer pool of 1GB. As expected, the benefit of relevance
over normal grows with larger scans and more concurrency.
We see that relevance also enhances its advantage over at-
tach when more queries run concurrently, even exceeding the
factor two observed in Figures 6 and 5, when scan ranges are
very or moderately selective. As this query set is uniform
in terms of range sizes, elevator can score close to relevance,
but we know from previous experiments that on combina-
tions of short and long ranges it is not a viable competitor.

5.2.4 Scheduling-cost scalability
The cost of scheduling in relevance is significantly higher

than for other policies. For example, the loadRelevance func-
tion needs to check every query for every table chunk, and
do this for each chunk a query requests. Figure 8 presents
the average times spent on scheduling when running 16 con-
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Figure 8: Scheduling time and fraction of execution
time when querying 1%, 10% and 100% of a 2GB
relation with varying chunk size / number

current streams of 4 I/O-bound queries, each with the same
relation stored in a different number of chunks of varying
sizes. As expected, the overhead grows super-linearly - with
smaller chunks, every query needs to scan more of them, and
the decision process for each data request needs to consider
more chunks. Still, even with the largest tested number of
chunks, the scheduling overhead in the worst case does not
exceed 1% of the entire execution time. In situations when
such overhead is not acceptable, e.g. with relations consist-
ing of hundreds of thousands of chunks, slightly less complex
policies can be considered. Also, our relevance implementa-
tion is rather naive, leaving opportunities for optimizations
that can significantly reduce the scheduling cost.

6. IMPROVING DSM SCANS
After our successful experiments with relevance in row-

storage, we now turn our attention to column-stores. The
decomposed storage model (DSM) has recently gained pop-
ularity for its reduced disk-bandwidth needs, faster query
processing thanks to improved data locality [3], possibility
of vectorized processing [5, 4] and additional compression
opportunities [33, 1]. While we will show that relevance can
also be successful here, we first discuss why DSM is much
more complex than NSM when it comes to scans in general
and I/O scheduling in particular, and how this influenced
our Cooperative Scans framework.

6.1 DSM Challenges
Table columns stored using DSM may differ among each

other in physical data representation width, either because
of the data types used, or because of compression. For exam-
ple, Figure 9 depicts column storage of a part of the TPC-H
lineitem table, with some columns compressed with tech-
niques presented in [33]. This shows that we can not as-
sume a fixed number of tuples on a disk page, even within
a single column. As a result, a chunk cannot consist of a
fixed number of disk pages as in NSM. Instead, chunks are
logical concepts, i.e. a horizontal partitioning of the table
on the tuple granularity. For example, one may divide a
table in conceptual chunks of a 100.000 tuples, but it is also
possible to use variable-size chunks, e.g. to make the chunk
boundary always match some key boundary. This implies
that chunk boundaries do not align with page boundaries.

LINEITEM COLUMNS DISK PAGE

o
rd

erkey

p
artkey

retu
rn

flag

exten
d

ed
p

rice

co
m

m
en

t
str:256bit

decim
al:64bit

P
D

IC
T

(str):2bit

P
F

O
R

(oid):21bit

P
F

O
R

−D
E

LT
A

(oid):3bit

ch
u

n
k 3

ch
u

n
k 2

ch
u

n
k 1

ch
u

n
k 0

Figure 9: Compressed column storage: more com-
plex logical chunk – physical page relationships

The underlying storage manager should provide an efficient
means to tell which pages store data from a chunk. De-
pending on the physical data representation, a single logical
chunk can consist of multiple physical pages, and a single
physical page can contain data for multiple logical chunks.

This logical-physical mismatch present in DSM becomes
even more problematic when using large physical blocks of a
fixed size for I/O, a technique introduced in NSM for good
concurrent bandwidth. The first problem here is that when
loading a block for one chunk, a potentially large amount of
data from a neighboring chunk can be loaded at the same
time. In NSM this does not occur, as chunks and blocks
are equivalent. In DSM, however, ABM needs to take spe-
cial care to minimize situations in which this extra data is
evicted before it could be used by a different chunk. Also,
keeping a full physical block in memory to provide it to an-
other query in the near future may result in a sub-optimal
buffer usage. The second problem is the buffer demand: in
NSM, for Q concurrent queries the system requires 2 ∗ Q
(factor 2 because of prefetching) blocks, which is usually ac-
ceptable, e.g. 512MB for 16 concurrent scans using 16MB
chunks/blocks. In DSM, however, to process a set of rows,
data from multiple columns needs to be delivered. While
some optimizations are possible, e.g. performing selections
on some columns early [13], in general all the columns used
by a query need to be loaded before the processing starts.
As a result, a separate block is needed for every column
used in a query, increasing the buffer demand significantly
for multi-column scans, e.g. to 4GB for 16 scans reading 8
columns each. This can be improved (in both models) by
analyzing which pages from blocks are already processed,
and re-using them as-soon-as-possible for I/Os for different
queries (with scatter-gather I/O). Both problems demon-
strate that in DSM the performance and resource demand
can be significantly improved by making algorithms page-
aware. However, such solutions significantly complicate the
implementation, and our current system currently handles
only chunk-level policies.

The final DSM problem for Cooperative Scans is the re-
duced data reuse opportunity between queries. Figure 10
shows two queries reading a subset of a table and their I/O
requirements in both NSM and DSM. Comparing the logical
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useRelevance(c, qtrigger)
| cols = queryColumns(qtrigger)
| U = |interestedOverlappingQueries(c, cols)|
| Pu = numberCachedPages(c, cols)
| return Pu/U

loadRelevance(c, qtrigger)
| query cols = queryColumns(qtrigger)
| queries = overlappingStarvedQueries(c, query cols)
| cols = columnsUsedInQueries(queries)
| L = |queries|
| Pl = |columnPagesToLoad(c, cols)|
| return L/Pl

keepRelevance(c, qtrigger)
| starved = almostStarvedQueries(c)
| cols = columnsUsedInQueries(starved)
| E = |starved|
| Pe = |cachedColumnPages(c, cols)|
| return E/Pe

Figure 11: DSM Relevance Functions

data need to the physical data demand in both models, we
see that the vertical expansion present in DSM is usually
significantly smaller than the horizontal expansion present
in NSM. As a result, fewer disk blocks are shared between
the queries, reducing the chance of reusing the same block
for different scans. In NSM, for a block fetched by some
query Q1, the probability that another query Q2, reading
T2 tuples, will use it is proportional to T2

TT
, where TT is the

number of tuples in the entire table. In DSM, we need to
take into account both vertical (as in NSM) and horizontal
overlap, reducing this probability to T2

TT
∗ Poverlap(Q1, Q2),

where Poverlap(Q1, Q2) is the probability of a column from
Q1 also being used in Q2.

6.2 Cooperative Scans in DSM
The DSM implementation of the traditional policies is

straightforward. In normal, the order of I/Os is strictly de-
termined by the query and LRU buffering is performed on a
(chunk,column) level. DSM attach joins a query with most
overlap, where a crude measure of overlap is the number of
columns two queries have in common. A more fine-grained
measure would be to get average page-per-chunk statistics
for the columns of a table, and use these as weights when
counting overlapping columns. Just like in NSM, the DSM
elevator policy still enforces a global cursor that sequentially
moves through the table. Obviously, it only loads the union
of all columns needed for this position by the active queries.

The framework for relevance in DSM is similar to that
in NSM, with a few crucial differences, caused by the chal-
lenges discussed in the previous section:
avoiding data waste – as discussed, with I/O based on
large physical blocks, it is possible that a block loaded for

one logical chunk contains data useful for neighboring chunks.
When the first chunk is freed, this data would be evicted. To
avoid that, the choice of the next chunk for a given query
is performed before the query blocks for a fully available
chunk. The already-loaded part of the chunk is marked as
used, which prohibits its eviction.
finding space for a chunk – in DSM it is possible that a
subset of columns in a buffered chunk is not useful for any
query. ABM first evicts blocks belonging to such columns.
Then, it starts evicting useful chunks, using the keepRele-
vance function to victimize the least relevant chunk. Note
that, unlike in NSM, this eviction process is iterative, since
due to different physical chunk sizes, possibly multiple chunks
need to be freed.1

column-aware relevance functions – Figure 11 shows
that the DSM relevance functions need to take into account
the two-dimensional nature of column storage and the vary-
ing physical chunk sizes. Like in NSM, useRelevance at-
tempts to use chunks needed by few queries, to make them
available for eviction. However, it also analyzes the size of
a chunk, to additionally promote chunks occupying more
buffer space. The loadRelevance function looks at the num-
ber of starved queries that overlap with a triggering query
and are interested in a given chunk. It also estimates the
cost of loading a given chunk by computing the number of
cold pages required for all needed columns. The returned
score promotes chunks that benefit multiple starved queries,
and require a small amount of I/O. The DSM keepRelevance
function promotes keeping chunks that occupy little space
in the buffer pool and are useful for many queries.
column loading order – a final issue in DSM is the order
of columns when loading a chosen chunk. If some queries
depend only on a subset of the columns, it may be benefi-
cial to load that subset first. Our current crude approach
is to just load column chunks in increasing size (in terms
of pages), which maximizes the number of “early” avail-
able columns, allowing queries to be awoken earlier. An-
other approach could prioritize columns that faster satisfy
some query needs. Finally, if data is compressed on disk but
kept decompressed in the buffer manager (like in SybaseIQ),
it might be valuable to first load compressed columns, so
their decompression is interleaved with loading the remain-
ing ones.

6.3 DSM Results
Table 3 presents DSM results for an experiment similar

to the one presented in Table 2 for NSM/PAX. One differ-
ence is that we used a faster “slow” query, since, due to the
faster scanning achieved by DSM, with the original query the
system was completely CPU bound, making it impossible
to demonstrate performance differences of different policies
with these queries. Also, we increased the lineitem size from
factor 10 ( 60Mtuples) to 40 ( 240Mtuples), to compensate
for the lower data-volume demand of DSM. Finally, since
our current implementation requires reserved memory for
each active chunk, and there are more chunks in DSM (one
for each column), we had to increase the buffer size from
1GB to 1.5GB to allow concurrent execution of 16 queries.

1If multiple chunks need to be freed, the dependency be-
tween them should be taken into account, something missed
by the greedy iterative approach used here. Choosing the
optimal set of chunks to free is a good example of a knapsack
problem surfacing in DSM I/O scheduling.



Normal Attach Elevator Relevance
System statistics

avg stream time 536.18 338.24 352.35 264.82
avg norm. lat. 7.05 4.77 15.11 2.96
total time 805 621 562 515
CPU use 61 % 77 % 82 % 92 %
I/O requests 6490 4413 2297 3639

Query statistics
query cold avg. avg. avg. avg.

latency latency latency latency latency

F-01 0.92 6.12 4.68 26.95 3.17
F-10 2.99 21.01 16.39 45.64 10.19
F-50 15.88 191.12 108.53 141.84 64.97
F-100 26.53 364.33 198.86 145.81 90.16
S-01 1.90 6.92 5.07 54.75 3.33
S-10 8.15 47.93 37.96 103.12 21.93
S-50 36.28 148.19 126.20 134.19 88.19
S-100 71.25 346.65 259.14 184.60 231.38

Table 3: Column-storage experiments with a set of
FAST and SLOW queries scanning 1%, 10%, 50%
and 100% of a table. 16 streams of 4 random queries.
All times in seconds.

Queries Normal Relevance
(used number query latency number query latency
columns) of I/Os avg. stddev of I/Os avg. stddev

Non-overlapping queries
ABC 5094 100.58 20.71 1560 24.27 5.24
ABC,DEF 6215 121.83 24.83 3254 57.87 14.54

Partially-overlapping queries
ABC 5094 100.58 20.71 1560 24.27 5.24
ABC,BCD 5447 107.86 21.28 2258 39.69 10.34
ABC,BCD,CDE 5791 113.26 27.39 2918 52.94 14.02
ABC,BCD,CDE 6313 125.14 22.35 3299 60.20 12.50

DEF

Table 4: Performance of DSM queries when scan-
ning different sets of columns of a synthetic table.

The results confirm that also in DSM relevance is clearly
the best scheduling approach. All policies behave as ob-
served earlier in NSM: normal performs bad in both dimen-
sions, while attach and elevator both improve the system
throughput, with the former additionally improving query
latencies. The relevance policy beats the competitors in
both dimensions, only losing slightly to elevator on the slow
full-table scan.

6.3.1 Overlap-ratio experiments
While so-far we have seen another success story of rel-

evance, in DSM there is the caveat of column overlap. If
queries have a significant percentage of overlapping columns,
DSM provides good I/O reuse opportunities, which are then
best exploited by relevance. In the following experiment,
however, we investigate to what extent decreasing column
overlap affects performance. We have performed a synthetic
benchmark, where we run various queries against a 200M-
tuple relation, consisting of 10 attributes (called A to J),
each 8 bytes wide. The buffer size is 1GB. We use 16 streams
of 4 queries that scan 3 adjacent columns from the table. In
different runs, corresponding queries read the same 40% sub-
set of the relation, but may use different columns. The total
number of chunks for the entire run is 7680 chunks.

The first part of Table 4 shows the performance changes
when query types do not have any overlapping columns.
With 16 parallel queries and one resp. two query types, we

thus have 16 resp. 8 queries of the same type (but with ran-
domly chosen 40% scan ranges). Due to the rather large size
of the scans, normal can still re-use quite a few blocks in case
of a single query type (around 33% of the 7680 chunks), but
about half of that is lost when two column-disjunct queries
are used. As for relevance, very good re-use is achieved us-
ing a single query type, with relevance beating normal by a
factor 4. With two query types, the average query latency
doubles, which corresponds to the 0.5 reduction of sharing
opportunities, but relevance still beats normal by a factor
two there.

With non-overlapping query families, numbers are some-
what harder to understand, but the general trend is that
I/O reuse drops with decreasing column overlap. As rele-
vance normally benefits more from bandwidth sharing, it is
hit more, relative to normal, but we still observe relevance
beating normal by a factor two in these situations. These
results confirm that the benefit of the relevance policy does
depend on the columns used in the queries. This knowledge
can be exploited by applications. For example, when look-
ing for correlations in data mining, assuming thousands of
queries are issued in the process and but only few are ex-
ecuting at the same time, it may be beneficial to schedule
the queries such that the column overlap is maximized.

7. COOPERATIVE SCANS IN A RDBMS
In this section we outline how existing DBMSs can be ex-

tended with Cooperative Scans, focusing on ABM implemen-
tation and adapting order-aware operators to out-of-order
data delivery.

7.1 ABM implementation
The most practical and least intrusive way to integrate

Cooperative Scans into an existing RDBMS is to put ABM

on top of the standard buffer manager. We successfully cre-
ated an early ABM prototype in PostgreSQL [32]. Here, to
load a chunk, ABM requests a range of data from the under-
lying manager. This request is fulfilled by reading multiple
pages occupying random positions in the standard buffer
pool. These pages, locked by ABM after reading, are provided
to all interested CScan operators and finally are freed when
ABM decides to evict them. An additional benefit is that ABM

can dynamically adjust its buffer size in situations when the
system-wide load changes , e.g. when the number of active
CScan operators decreases. Also, if the buffer manager pro-
vides an appropriate interface, it is possible to detect which
pages of a chunk are already buffered and promote partially-
loaded chunks in ABM.

Though we motivate our focus on a single table for CScan

in Section 2, a production-quality implementation of CScan

should be able to keep track of multiple tables, keeping sep-
arate statistics and meta-data for each (large) table in use.
As our approach targets I/O bound situations, for small ta-
bles CScan should simply fall back on Scan.

Finally, ABM only improves performance on clustered scans.
For unclustered data access, CScan should not be used. Still,
ABM can exploit the queue of outstanding page requests gen-
erated by the normal buffer manager to prioritize chunks
more as they intersect more with this queue. When the
chooseChunkToLoad() decides to load a chunk, any inter-
secting individual page requests should be removed from the
normal page queue.



7.2 Order-aware operators
In this section, we discuss the impact of the out-of-order

delivery of tuples by CScan on query processing. In its purest
form, the relational algebra is order-unaware, and this holds
true for many physical operators (e.g. nested-loop join,
scan-select, hash-based join and aggregation, etc.). How-
ever, query optimizers make a clear distinction between order-
aware and unaware physical operators (e.g. by enumerating
sub-plans that preserve certain “interesting orders”). The
two major order-aware physical operators are ordered aggre-
gation and merge-join.

Ordered aggregation exploits the key-ordering of the in-
put for efficient computation of per-key aggregate results
that can be immediately passed to the parent once a key
change is detected. With Cooperative Scans, ordered aggre-
gation can still exploit the fact that the per-chunk data is
internally sorted. We pass the chunk number of a tuple as
a virtual column via the Volcano-like operator interface of
MonetDB/X100. When processing a given chunk, the oper-
ator performs inside-chunk ordered aggregation, passing on
all the results except for the first and the last one in the
chunk, as these aggregates might depend on the data from
other chunks. These border values are stored on a side, wait-
ing for the remaining tuples that need to be included in that
computation. A key observation is that chunks are large, so
not huge in number, and the number of boundary values to
keep track of is limited by the number of chunks. Looking at
the chunk sequence, it is also possible to detect the “ready”
boundary values early and pass them to the parent imme-
diately, which is especially useful with multiple consecutive
chunks delivered.

Merge Join can be handled in the attach and elevator poli-
cies as follows [14]: at a moment when a scan starts on one
table, a matching position in the other table is found, and
join processes until the end of table. Then, the scan on
both tables starts from the beginning, processing until the
original position.

Since relevance’s data delivery pattern is much more dy-
namic, a more complex approach is necessary. In case the
inner table fits main memory, it is enough to switch to a
proper position in this table (using index lookup) whenever
a chunk in the outer table changes. When both tables need
to be scanned, and relevance is applied for both, the situ-
ation becomes more complicated such that systems should
fall back to Scan instead of CScan.

In one special yet valuable case, CScan can still be applied
though. MonetDB/X100 uses join indices for foreign-key
relationships. For example, the join index over orderkey

between lineitem and order in TPC-H adds the physical
row-id #order as an invisible column to lineitem. By storing
the lineitem table sorted on #order (and order itself sorted
on orderdate), we get multi-table clustering, where tuples
are stored in an order corresponding to the foreign key join
relationship.

Within MonetDB/X100, there is ongoing work on Cooper-
ative Merge Join (CMJ) that works on top of such clustered
tables, fully accepting out-of order data as it is delivered
by CScan. The key observation is that multi-table clustered
DSM tables can be regarded as a single, joined, DSM table
on the level of ABM, as it already has to deal with the fact
that in DSM columns have widely varying data densities
and chunk boundaries never coincide with page boundaries.

Thus, ABM views the physical representation of the clustered
order and lineitem table as the physical representation of the
already joined result, even though the data density in the
order columns is on average six times lower than in lineitem.
Using the freedom to choose the boundaries of logical chunks
at will, it makes sure that matching tuples from order and
lineitem always belong to the same chunk. Thus, a single
CScan operator can deliver matching column data from both
order and lineitem tables and the special CMJ merge-join
reconstructs joined tuples from these.

8. RELATED WORK
Disk scheduling policies are a topic that originated from

operating systems research [29]. Various such policies have
been proposed, including First Come First Served, Shortest
Seek Time First, SCAN, LOOK and many others. Most rel-
evant for our work is SCAN, also known as the “Elevator”
algorithm. In this approach, a disk head performs a contin-
uous movement across all the relevant cylinders, servicing
requests it finds on its way. Other related operating system
work is in the area of virtual memory and file system paging
policies, for which generally LRU schemes are used. Note,
that these solutions are mostly targeted at optimizing the
disk seek time with multiple random disk accesses. In case
of large sequential scans, these policies will offer very little
improvement.

Previous research in DBMS buffer management [7, 23, 6,
12] usually considered large table scans trivial and suggested
a simple LRU or MRU policy, which minimized the possi-
bility of inter-query data reuse. To overcome this problem,
the concept of circular-scans has been introduced in some
commercial DBMSs, e.g. Teradata, RedBrick and Microsoft
SQLServer [20, 9, 10]. A variation of this idea was suggested
in [16], where authors issue a massive number of concurrent
request to the buffer manager and serve them in a circular
fashion. It was also discussed as a part of the Q-Pipe archi-
tecture [14]. All these approaches follow either the attach
or elevator policies, which in Section 5 have been shown as
inferior to the new proposed relevance policy. Recently, a
modified version of the attach policy has been suggested for
the IBM DB2 system [17]. This solution introduces slight
improvements to attach, by adding explicit group control
and allowing a limited throttling of faster queries, but still
suffers from the major attach problems.

Most previous work regarding table scans has focused on
row storage only, ignoring scans over column-oriented data.
A recent paper by Harizopoulos et al. [13] provides a detailed
analysis of the I/O behavior differences between DSM and
NSM. However, this paper concentrates on single-query sce-
narios and does not analyze the problem of the DSM buffer
demand, which we found important, especially in a concur-
rent environment.

Scheduling is also important in real-time database sys-
tems [15], where transactions need to be scheduled to meet
certain time critical constraints. This involves making schedul-
ing decisions based on the availability of certain resources,
such as CPU, I/O, and buffer-manager space. Our work
differs from such scheduling, in that we do not treat buffer-
manager space as a resource being competed for, but rather
schedule in a way to maximize sharing opportunities.

In multi-query optimization [26], the optimizer identifies
the common work units in concurrent queries and either ma-
terializes them for later use [18] or creates pipelined plans



where operators in multiple queries directly interact with
each other [11]. The concept of shared scans is often a
base for such query plans [11]. When compared with our
work, multi-query optimization is performed on a higher
level, namely on the level of query processing operators that
may be shared. Such operator sharing is even the corner-
stone of the Q-Pipe architecture [14].

A related approach is multi-query execution (rather than
optimization). The NonStop SQL/MX server [8] introduced
a special SQL construct, named ‘TRANSPOSE’, that allows
explicitly specifying multiple selection conditions and mul-
tiple aggregate computations in a single SQL query, which
is executed internally as a single scan.

Ideas close to our algorithms have been explored in re-
search related to using tertiary storage. Sarawagi and Stone-
braker [24] present a solution that reorders query execution
to maximize data sharing among the queries. Yu and De-
Witt [31] propose pre-executing a query to first determine
the exact access pattern of a query and then exploit this
knowledge to optimize the order of reads from a storage fa-
cility. Moreover, they use query batching to even further im-
prove performance in a multi-query environment. Shoshani
et al. [27] explore the multi-dimensional index structure to
determine files interesting for queries and apply a simple file
weighting based on the number of queries interested in it.
This is a special-purpose system, while we attempt to inte-
grate Cooperative Scans in (compressed column) database
storage and query processing architectures.

Ramamurthy and DeWitt recently proposed to use the
actual buffer-pool content in the query optimizer for access
path selection [22]. This idea can be extended for Coopera-
tive Scans, where the optimizer could adjust the estimated
scan cost looking at the currently running queries.

9. CONCLUSIONS AND FUTURE WORK
In this paper we motivated and described the Cooperative

Scans framework, that significantly enhances existing I/O
scheduling policies for query loads that perform concurrent
(clustered index) scans. One area where this is highly rel-
evant is data warehousing, but (index) scan-intensive loads
are found in many more application areas, such as scientific
databases, search, and data mining.

The Active Buffer Manager (ABM) coordinates the activi-
ties of multiple Cooperative Scan (CScan) queries in order to
maximize I/O bandwidth reuse, while ensuring good query
latency. We compared a number of existing scheduling poli-
cies (LRU,circular scans, elevator), and have shown that our
new policy outperforms them consistently.

We have shown the benefit of our approach in experiments
using both row-wise storage (NSM or PAX) and column-
wise storage (DSM). While column-stores have gained a lot
of interest in recent years, we are not aware of significant
previous work on I/O scheduling for column stores. One
of our findings here is that DSM scheduling is much more
complex, and efficient DSM I/O requires considerably more
buffer space than NSM. Our new policy performs progres-
sively better when buffer space is scarce, which plays to its
advantage in DSM.

We described how ABM can be implemented on top of
a classical buffer manager and also discussed order-aware
query processing despite out-of-order data delivery, which is
a topic of ongoing research.
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